Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cylindrical templates enable materials with cylindrical pores. Cylindrical persistent micelle templates enable independent control of pore and wall dimensions where increasing the material content (TiO2) increases the wall thickness alone.more » « lessFree, publicly-accessible full text available September 16, 2026
-
Free, publicly-accessible full text available July 27, 2026
-
Free, publicly-accessible full text available May 12, 2026
-
Free, publicly-accessible full text available February 25, 2026
-
Free, publicly-accessible full text available January 28, 2026
-
Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions (“P-NP1−NP2”; NPi = TiO2, Nb2O5, ZrO2). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions (“PD-NP1−NP2”) improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP1) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity.more » « less
-
Micelle sizes are critical for a range of applications where the simple ability to adjust and lock in specific stable sizes has remained largely elusive. While micelle swelling agents are well-known, their dynamic re-equilibration in solution implies limited stability. Here, a non-equilibrium processing sequence is studied where supersaturated homopolymer swelling is combined with glassy-core (‘‘persistent’’) micelles. This path-dependent process was found to sensitively depend on unimer concentration as revealed by DLS, SAXS, and TEM analysis. Here, lower-selectivity solvent combinations led to the formation of unimer-homopolymer aggregates and eventual precipitation, reminiscent of anomalous micellization. In contrast, higher-selectivity solvents enabled supersaturated homopolymer loadings favored by rapid homopolymer insertion. The demonstrated B40–130 nm core-size tuning exceeded prior equilibrium demonstrations and subsequent core-vitrification enabled size persistence beyond 6 months. Lastly, the linear change in micelle diameter with homopolymer addition was found to correlate with a plateau in the interfacial area per copolymer chain.more » « less
An official website of the United States government
